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This paper is concerned with the collapse and subsequent self-excited oscillation of compliant
tubes conveying fluids. Our model considers a two-dimensional, inviscid, shear flow in a flexible
channel of infinite length subject to linear, travelling varicose waves. Analysis of the boundary-
value problem leads to two findings which do not seem to have been noticed before, despite the
close attention this kind of fluid—structure interaction has attracted on account of its medical
significance. The pressure perturbation on the wall has two components, the first is in-phase
with the wall displacement and the second with the velocity of the wall motion. For potential
flow, the first component is the only one tending to destabilize and is known as the Bernoulli
effect. For shear flow, however, the sign of the pressure is reversed as the Bernoulli effect is
overcome by the perturbations of the vorticity field. Streamline patterns show that Kelvin’s
‘‘cats’ eyes’’ are sheltered in the wider channel sections, rendering the effective flow passage
smaller where the physical width is larger. The second component produces a wave drag, hence
irreversible transfer of energy from the flow to waves. We argue that this is a possible
mechanism for the self-excited oscillation observed in experiments. This mechanism is similar to
Miles’s (1957) mechanism of water wave generation by wind, which is a class B instability
according to the Benjamin—Landahl categorization, but the accompanying reversal of the
Bernoulli effect is different and depends essentially on the presence of a second boundary. The
eigenvalue problem is also considered and it is shown that dynamic instability of long but finite
wavelength could be experienced by compliant channels with thick walls, a typical application
being the respiratory flow in the upper airways. The critical flow speed is given in terms of the
channel properties. ( 1998 Academic Press Limited
1. A BRIEF REVIEW

THE PROBLEMS OF STABILITY of flexible structures exposed to fluid flows have tremendous
geometrical variety and involve several distinct fluid—structure interaction mechanisms.
Two typical problems are (i) flow over a single flexible surface such as the air—sea interface,
and (ii) flow through collapsible tubes such as the flow of the blood and air in human bodies.
Though closely related, theoretical developments in the two areas have distinct features.
Much can be learned from a comparative study of the two topics. In what follows, we first
give a brief view of experiments and theories pertaining to the internal flow, followed by
a similar account for the external flow. We then ask the question of whether the well-
established theory of travelling wave flutter in the external flow has its equivalent in the
internal flow. This leads us to a new model of shear flow through a compliant channel,
a model with interesting and different properties.
0889-9746/98/020131#21 $25.00/fl970131 ( 1998 Academic Press Limited



132 L. HUANG
1.1. FLOW THROUGH COLLAPSIBLE TUBES

Studies of flow through collapsible tubes are motivated by many physiological phenomena
relating to blood flow and respiration, as well as industrial concerns with oil pipelines.
Virtually, all fluid-carrying vessels in the body are elastic and collapsible. Two such
examples are the pulmonary blood vessels in the upper levels of the lung (Caro et al. 1978)
and the bronchial airways (Grotberg 1994). Recently, human snoring has been added to the
category (Huang et al. 1995). About 15% of the adult population snore and when they do,
or rather we do, the upper airways routinely collapse and oscillate under excessive
breathing effort. One remarkable characteristic of snoring is that it occurs while the
inspiratory flow rate is still increasing whereas other phenomena, such as wheezing
(Gavriely et al. 1989), start after the volume flow rate becomes limited. Many people also
suffer from a medical condition called ‘‘obstructive sleep apnoea’’, where ‘‘sleep apnoea’’ is
defined as a total cessation of breathing for more than 10 s, causing life-threatening oxygen
desaturation. The pathogenesis of apnoea is still a mystery, but it seems reasonable to
suggest that the airway collapse is a prelude.

Mechanical modelling for different physiological phenomena must deal with different
ranges of the important fluid—structure coupling parameters, such as the mass ratio and the
strength of the wall compared with the dynamic head of the flow, but laboratory models are
remarkably similar in their basic construction. A typical rig has a segment of rubber tube
clamped at its up and downstream ends and surrounded by a pressure chamber which
controls the transmural pressure. Devices may be added to provide independent adjus-
tments on the driving pressure and the flow resistance (such a design is traditionally called
a ‘Starling resistor’’). Due to friction, the flow at the downstream end of the tube has the
lowest pressure and at a certain volume flow rate the tube first buckles near the downstream
clamp forming a ‘‘neck’’. Further decrease in the downstream pressure accelerates the flow
but narrows the neck, and a point will be reached when the volume flow rate attains its peak
value. Upon further increase in the driving pressure, oscillations of several distinct frequen-
cies as well as random vibrations may follow [see a review by Kamm & Pedley (1989), and
extensive experiments by Bertram et al. (1990)]. It is not clear whether the oscillation is
a nonlinear manifestation of static instability or an intrinsically linear dynamic instability.

It may seem too idealistic for modelling any real physiological phenomena, but the
Starling resistor is by no means free of theoretical complications. The transmural pressure is
nonuniform along the tube length. The flow around the neck probably involves unsteady
separation and is poorly understood. Theories based on empirical models for the flow
separation have been developed (Cancelli & Pedley 1985), but their direct validation by
experiments is still difficult (Jensen 1990). Vortex shedding may be a factor for which
progress has been made by numerical simulations (Luo & Pedley 1996) of flow through
a channel with a segment of massless wall under tension. But for a more realistic wall and
perhaps in three dimensions, the stress distribution in a collapsed shell presents a daunting
task for solid mechanics (Heil & Pedley 1995). One is often forced to use a one-dimensional
fluid—structure coupling model, the tube law, which assumes a stiffness coefficient relating
the local transmural pressure with the cross-sectional area, e.g. Shapiro (1977) and Cancelli
& Pedley (1985). To find a credible lumped-stiffness coefficient, one has to integrate the
structural restoring forces along the circumference. As the tube collapses, the circumferen-
tial bending stiffness, being proportional to local curvature, decreases dramatically as the
initially circular section changes into elliptical shapes with large aspect ratio which may be
modelled by a two-dimensional channel [cf. Kececioglu et al. (1981; Figures 7 & 8)]. In fact,
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a Starling resistor is a system of highly variable parameters. True to physiological reality it
may be, but these theoretical complications often represent an obstacle to a clear analytical
understanding of the oscillations.

A more idealized and more tractable theoretical model is constructed by Grotberg
& Reiss (1984) [for later publications on this theory, see Grotberg & Shee (1985), Grotberg
& Gavriely (1989), Gavriely et al. (1989) and Grotberg (1994)]. It assumes a uniform
transmural pressure and a plug flow as the core. The key new element is the inclusion of the
viscous effect by a Darcy friction coefficient which leads to travelling wave flutter, whereas
a potential flow model only gives static divergence. Recently, LaRose & Grotberg (1997)
have abandoned this crude model and taken the theory forward to the realistic velocity
profile in developing flows. More details are given in Section 1.3, and a direct comparison
with our theory will be presented in Section 3.2.

Interest in oil pipelines and other engineering applications have also led to
extensive research in internal flow as well as annular flow through coaxial cylindrical
shells (Paı̈doussis & Issid 1974; Weaver & Paı̈doussis 1977). Among many recent papers in
this area is the numerical simulation using the linearized, unsteady flow Navier—Stokes
equation (Nguyen et al. 1994).

In yet another separate development, Kumaran et al. (1994) and Kumaran (1995a)
studied the destabilizing mechanism in Stokes flow through flexible tubes lined with
a gel-like viscoelastic medium. The coupling between the fluid shear stress and the tangen-
tial motion of the fluid—solid interface is shown to be responsible for the interface instabili-
ties. In these studies, the inertia of both fluid and solid is ignored and there is no coupling
between the mean flow and the fluctuations in directions normal to the fluid—solid interface.
The effect of fluid inertia was analysed later (Kumaran 1995b, 1996), with the interesting
finding that the above-mentioned destabilizing mechanism is neutralized by the stabilizing
effect of viscous damping in high Reynolds number flows. Although the tangential motion
of the wall is neglected in our studies for walls with high shear elastic modulus, Kumaran’s
findings on the differences between the instabilities of flow through flexible tubes and the
much more widely investigated configuration of channels may prove to be very useful in the
future development of theory into three dimensions.

1.2. EXTERNAL FLOW INSTABILITIES

Linear instability of flow over a rigid surface, the Tollmien—Schlichting instability (TSI),
concerns the early stages of flow transition from laminar to turbulent and the governing
equation is the Orr—Sommerfeld equation. The key to TSI is the production of positive
Reynolds stress, hence energy transfer from the mean flow to the perturbation, by the wall
friction layer enforcing the no-slip condition on the tangential wave perturbations.
Kramer’s (1957) claim of substantial drag reduction by dolphin-skin-like flexible surfaces
provided the motivation for extensive theoretical studies on the effect of flexible boundaries
on flow instability. Brooke Benjamin (1960) showed that the response from a flexible surface
can disrupt the mechanism of TSI by effectively removing the friction layer, thus creating
a delay in boundary-layer transition.

The second type of instability that may occur in a flexible surface is the travelling wave
flutter (TWF). Its essential fluid dynamic mechanism was first discovered by Miles (1957) in
the context of water wave generation by wind. The irreversible energy transfer from the
mean airflow to the wavy motion of water is found within the gradient of vorticity at the
critical layer where the mean flow speed is equal to the wave speed. This mechanism



134 L. HUANG
operates even if the fluid is inviscid. It was later re-examined in the framework of viscous flow
by Brooke Benjamin (1959) and by Miles (1959) himself, both confirming that there is little
influence of viscosity. Brooke Benjamin (1963) later classified this essentially inviscid mecha-
nism as a class B instability (flexibility-modified-TSI being class A), which has to be carefully
avoided if a Kramer-type surface is to succeed in delaying the onset of class A instability.

In fact, Brooke Benjamin went on to name the static divergence and Kelvin— Helmholtz
instability as class C instabilities [see also Landahl (1962) for an illuminating categorization
in terms of system energy balance]. One of the main contributions from Brooke Benjamin,
however, is his discovery of the destabilizing effect that structural damping has on class
A waves, which is in sharp contrast to the stabilizing role it normally plays in instabilities
such as TWF. Furthermore, fluid viscosity could bring about a resonance or coalescence of
class A and B instabilities, but this was found to be unlikely by Miles (1962) in normal
circumstances of water wave generation. The theory was further developed and clarified by
Carpenter & Garrad (1985, 1986), who classified it as a fourth type of instability. But for the
purpose of our comparative studies, it may be sufficient to sum up by stating that the
fundamental sources of the class A, B and C instabilities are, respectively, fluid viscosity,
vorticity gradient and fluid inertia. These three distinct physical mechanisms will now guide
us to re-examine some existing instability theories pertaining to internal flow and lead us to
a new model.

1.3. INTRODUCTION OF THE INTERNAL SHEAR FLOW MODEL

Until quite recently the ‘‘diffusion’’ of theories of external flow instability into studies of
internal flow seems to have been limited to the class A instability. Applying the
Orr—Sommerfeld analysis to the channel flow with flexible walls, Hains & Price (1962), and
later Green & Ellen (1972), found that, as in external flows, TSI is also delayed in flexible
channels and can be eliminated by sufficient wall flexibility. In practice, however, there are
perturbations, like surface roughness and finite amplitude perturbations, that readily
promote flow transition at a Reynolds number much lower than that predicted by a linear
Orr—Sommerfeld theory [see, for example, Rotenberry & Saffman (1990) and Rotenberry
(1992)]. A recent numerical simulation based on the Orr—Sommerfeld equation (Davies
& Carpenter 1997) also suggests that laminar-turbulent transition could be delayed indefi-
nitely with multiple short compliant panels.

Two points need to be clarified regarding TSI in channel flows. First, TSI is only found
for the antisymmetric perturbation mode in which the axial perturbation velocities on the
two walls are in opposite directions, which differs from the symmetric mode considered by
our shear flow theory. None of the aforementioned work covers the symmetric mode. The
second point is that, when a flexibility-modified-TSI occurs, say, at a higher Reynolds
number, it leads to flow transition but not necessarily to violent flutter involving substantial
vertical motion on the part of the flexible surfaces. The fact that this is so can be explained
more clearly by nonlinear theories (Bayly et al. 1988). First, the positive growth rate
available from the TSI mechanism is very limited and waves settle down to a mild finite
amplitude, which is itself a dynamic mean state where the growth of further perturbation
constitutes a secondary instability. The final stages of turbulence transition feature the
growth of short waves, which bear little resemblance to the long waves predicted by the
linear TSI and which are unlikely to couple with the wall vibration. It is perhaps not
difficult to appreciate this point from the fact that Tollmien—Schlichting waves primarily
exist in flows over rigid boundaries.
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Static divergence can also be anticipated in a channel flow with sufficiently high flow
speed and a structural damping so high that flutter is not encountered first. This type of
instability was the only result available to earlier biofluid-mechanical studies based on
potential flow models [e.g., Conrad (1969); Matsuzaki & Fung (1979)]. Again, the perturba-
tion considered for divergence is in a symmetric mode.

Knowing that the linear instabilities of classes A and C exist in flexible channel flows, we
naturally ask the question of whether the essentially inviscid mechanism of travelling wave
flutter (class B) also exists in channel flows. To answer this, we exclude class A instability
and its possible interaction with class B, but class C instability, being insensitive to
damping, can be considered alongside. Therefore we introduce a model in which (a) the
fluid can be treated as inviscid since viscosity is not essential for class B or C instabilities; (b)
the flexible channel is uniform and of infinite length; its two walls are perturbed to move in
the opposite directions (symmetric mode), and it is hoped that results from such a two-
dimensional configuration will be relevant to the flutter of partially collapsed tubes where
the aspect ratio may be very high. It is anticipated that structural viscosity stabilizes class
B instability, so the main point we want to know is whether the mechanism of energy
transfer from the fluid to the surface is present. The possibility of a class C instability will
also be evident once we know whether the pressure response to the channel wall perturba-
tion increases or decreases the effective bending stiffness of the wall.

In what follows, we adapt Miles’s (1957) theory to our model of shear flow through
flexible channels. We find that the mechanism of class B instability in symmetric mode
indeed exists, and our preliminary eigenvalue studies show that travelling wave flutter
occurs when the rate of energy transfer from the flow to the wall vibration exceeds the rate
of structural dissipation. Furthermore, for velocity profiles with moderate gradient near
the wall, such as the plane Poiseuille flow, the pressure induced by a travelling varicose
wave opposes the wall displacement as part of the perturbation Reynolds stress overrides
the inertia force. In other words, the familiar Bernoulli effect is reversed.

Recently, LaRose & Groberg (1997) considered very much the same model except that
the fluid viscosity is retained. They solve the eigenvalue problem based on the
Orr—Sommerfeld equation both numerically and, for the long-wave limit, analytically. They
confirmed the existence of the travelling-wave flutter in flexible channels and many results
agree with our analytical solution for the inviscid flow model. However, there are differ-
ences, the main one being the flutter wave speed. In our model, the wave speed should be
less than the maximum flow speed at the channel centreline, while theirs indicates that the
critical wave speed is typically twice as much as the maximum flow speed.

2. VARICOSE WAVE THEORY

2.1. THE BOUNDARY-VALUE PROBLEM

We consider a two-dimensional, inviscid, incompressible shear flow through an elastic
channel of infinite length. The two channel walls undergo varicose heaving motions of
small, constant amplitude in the form of a travelling wave. The wave travels in the direction
of the flow and its phase speed is less than the maximum undisturbed flow speed. The reason
for limiting the wave speed in this range will be given shortly. We now want to find out the
pressure perturbation on the walls.

As shown in Figure 1, the channel has a height of 2h*. The undisturbed flow has its
maximum speed at the centre, º*

.!9
, and for the lower part, y*3 (0, h*), the undisturbed

vorticity dº*/dy* decreases with height to vanish at y*"h*.



Figure 1. The model problem

136 L. HUANG
We now scale all dimensional variables in terms of length h*, velocity º*
.!9

and pressure
head o*

0
(º*

.!9
)2, where o*

0
is the constant fluid density. The dimensionless variables are

denoted by corresponding dimensional symbols without the asterisk. Note that h and ºD
y/1

are unity by definition.
The elevation of the lower wall is prescribed as the real part of

g"g
0
e*k(x~ct), (1)

where the wave number k and the wave speed c are both real and the scaled wave amplitude
g
0
;1. The coupled fluid—wall eigensystem will be investigated later when c will have to be

assumed to be complex. The linear perturbation is governed by the Rayleigh equation,
which is briefly derived below, since the original momentum conservation equations will
prove to be handy when interpreting the physics.

The Euler momentum equation is

Dq
Dt

#$p"0,

where q"(º#u, v ) is the complete velocity and p is the perturbation pressure. Lineariz-
ation gives

Lu

Lt
#º

Lu

Lx
#v

dº

dy
#

Lp

Lx
"0,

Lv

Lt
#º

Lv

Lx
#

Lp

Ly
"0. (2)

The conservation of mass is automatically satisfied by the introduction of a perturbation
stream function t as follows:

t (x, y, t )"W (y)g (x, t ), u"
Lt
Ly

, v"!

Lt
Lx

, (3)

where, for convenience, a factor of g has been taken out of t; so, the function W (y), which
represents the vertical structure of t, has the dimension of velocity and is on the order of
unity. The integration of the axial momentum equation in (2) gives the pressure perturbation

p"![(º!c)W@!º@W]g, (4)

which, when inserted for Lp/Ly in the vertical momentum equation, yields the Rayleigh
equation:

[(º!c)W@!º@W]@"k2(º!c )W, (5)

where primes denote differentiation with respect to y.
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The first boundary condition is the continuity of vertical velocity on the lower wall:

Lg
Lt

#º

Lg
Lx

"ik[º(0)!c]g"v"!

L (Wg)

Lx
"!ikWg,

so that W (0)"c!º(0). We may assume a no-slip condition on the wall for the mean shear
flow, º (0)"0, so that W (0)"c, bearing in mind that the same is not imposed on the
perturbation velocity u in an inviscid flow model.

The second boundary condition concerns the symmetric motion of the two opposing
walls which allows no flow across the centreline, so that v"!L (Wg)/Lx"!ik(Wg)"0 at
y"1. The two boundary conditions are now written as

W(0)"c, W (1)"0. (6)

The pressure on the wall is of primary interest, but first we have a look at the pressure
expression for all levels given in equation (4). There are two terms inside the square bracket,
the first is the inertia term (Bernoulli effect), and the second the effect of the mean flow
vorticity. The physics of the latter may be appreciated by changing to a reference frame
which rotates with an angular velocity of 1

2
º@ [cf. Lighthill (1962, p. 389)]. The flow then

appears to be locally irrotational. Such a change renders the Bernoulli equation applicable
only at the expense of introducing the Coriolis force to the vertical perturbation, which is
exactly the second part of the perturbation pressure given in equation (4). The Rayleigh
equation is basically a statement of the force balance between the pressure gradient and the
inertia force in the vertical direction. The vertical pressure gradient vanishes in the
long-wave limit, kP 0, as can be seen from equations (4) and (5), and the pressure on the
wall is the same as at any other level. For either y"0 or y"1, we may make use of one of
boundary conditions (6), so that

p D
y/0

"c[W@(0)#º@(0)]g, p D
y/1

"!(1!c)uD
y/1

.

The last equation means that the Bernoulli equation applies on the centreline because the
axial component of the vorticity-related force, !º@v, vanishes. Note that equating the
pressure at y"1 to that at y"0 by virtue of the long-wave limit is not equivalent to
conducting a one-dimensional flow analysis. The difference, which is an important one, lies
in that uD

y/1
has a certain phase delay in relation to uD

y/0
in two-dimensional shear flows.

The main difficulty in solving the governing equation (5) is that a singularity occurs at the
critical layer, y"y

c
, where the wave speed equals the shear flow speed, º (y

c
)"c. The

singularity is removed by the inclusion of viscosity, which then gives the fourth-order
Orr—Sommerfeld equation. Normally there is no explicit solution of compact form even for
the Rayleigh equation for arbitrary velocity profiles. The method of Frobenius is often used
for a series solution around a regular singularity. An alternative procedure is Heisenberg’s
expansion (Lin 1955, p. 34) in terms of k2, where k is the wave number, so that the stream
function and the wall pressure are, respectively,

W"W
0
#W

2
k2#W

4
k4#2, pD

y/0
"p

0
#p

2
k2#p

4
k4#2. (7)

We shall focus on the leading-order terms W
0

and p
0
, whose subscripts should not be

confused with the wall location y"0, but the k2-term will also be given to facilitate the
eigenvalue studies later on. The results of the eigenvalue studies will show that perturba-
tions of long but finite wavelength do feature in flutter-type instability in channels with
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thick walls. This covers the typical situation of respiratory flow through the upper airways,
which is one of our main interests.

At the long-wave limit, the Rayleigh equation (5) is reduced to a first-order ordinary
differential equation, (º!c)W@!º@W"constant, where the constant is essentially the
pressure perturbation. The solution that satisfies the two boundary conditions (6) is

W
0
"!(º!c)

I (1)!I (y)

I(1)!I (0)
, I (y)"P

dy

(º!c)2
. (8)

A similar expression was used by Brooke Benjamin (1959; eq. 7.4), who remarked that the
extra terms present in the full Heisenberg expansion do not affect the behaviour of the shear
flow in any vital way. Before we specify the velocity profile º(y ), we would like to carry out
some general investigations on the solution.

2.2. GENERAL INVESTIGATIONS ON THE LONG-WAVE SOLUTION

The singular integrand (º!c )~2 can be expressed by its Lorentz series around y"y
c
,

1

(º!c)2
"

1

(º@
c
)2 G

1

(y!y
c
)2
!

ºA
c

º@
c

1

y!y
c

#C
3

4 A
ºA

c
º@

c
B
2
!

º@@@
c

3º@
c
D#O (y!y

c
)H,

where all subscripts c indicate evaluation on the critical layer y"y
c
. The integral of the

first-order singular term, (y!y
c
)~1, gives ln(y!y

c
) which has a branch point at y"y

c
,

and the choice of branch is decisive for the outcome. The right choice is made in accordance
with the fact that the fluid is viscous, therefore the inviscid solution should be the limit
solution for the Orr—Sommerfeld equation. It has been shown that the correct branch is
found if the real wave speed c is taken as the limit of a complex one c"c

r
#ic

i
as c

i
P 0

from the side of wave growth, c
i
'0. This means that y!y

c
, which originates from

(º!c)+º@
c
(y!y

c
) near y"y

c
, has a vanishing negative imaginary part, equivalent to

taking a semi-circle route under the singularity when integrating : (º!c)~2 dy along the
real axis y by the theorem of residues. It works out to be, for y(y

c
,

ln(y!y
c
)"ln Dy!y

c
D!in (9)

(Lin 1955; eq. 8.3.1). The physical significance of the choice is that the inviscid solution is
a valid approximation to the viscous problem only when the neutrally stable waves are
approached as exponentially growing waves of vanishing growth rate. We will find in our
solution that the perturbation waves always tend to grow, although the same is not true for
shear flows through rigid channels.

We now proceed to evaluate the integral I(y ),

I(y)"
1

(º@
c
)2 G

!1

y!y
c

!

º@@
c

º@
c

ln(y!y
c
)#C

3

4 A
º@@

c
º@

c
B
2
!

º@@@
c

3º@
c
D (y!y

c
)#O[(y!y

c
)2]H .

(10)

The insertion of this result into equation (8) gives W
0
(y ). Of particular interest is W

0
around

the singular point y"y
c
. By approximating º!c in the first equation of equations (8) by

º@
c
(y!y

c
) and noting that both I (0) and I(1) are finite, we have

W
0
"

º@
c
#º@@

c
(y!y

c
)ln(y!y

c
)#O (y!y

c
)

!(º@ )2[I (1)!I(0)]
,

c
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and its value at y"y
c
,

W
0c
"

1

!º@
c
[I (1)!I (0)]

, (11)

is finite. For locations near y"y
c
we have

W
0
"W

0c C1#
º@@

c
º@

c

(y!y
c
) ln(y!y

c
)#O(y!y

c
)D , (12)

which is the same as that worked out by Rayleigh himself (Miles 1957; p. 193). The
derivative W@

0
has a logarithmic singularity,

W@
0
"

W
0c
º@@

c
º@

c

[ln(y!y
c
)#O (1)],

which indicates a large axial velocity perturbation on the critical layer where sheet-vortices
are formed in the absence of viscosity. But the difference between the derivatives on the two
sides is found to be finite. Applying the branch point choice equation (9), we have the ‘slip
velocity’,

u(y`
c
)!u (y~

c
)"[W@

0
(y`

c
)!W@

0
(y~

c
)]g"in

W
0c
º@@

c
º@

c

g, (13)

which is out-of-phase with the stream function t
0c

(x)"W
0c

g.
Having arrived at the asymptotic solution around the critical layer, we are able to

evaluate the pressure on the critical layer, p
0c

. There are two terms in the general expression
of pressure, equation (4). The first term (º!c )W@

0
vanishes since º!c+º@

c
(y!y

c
)

approaches zero faster than the logarithmic divergence of W@
0
. Only the vorticity term º@W

0
is left. Together with W

0c
of equation (11), we have

p
0c
"º@

c
t
0c

(x )"
!g

:1
0
(º!c )~2dy

. (14)

Note that the expression is accurate for the critical layer, although it is a long-wave
approximation of pressure for other levels, and that the pressure troughs coincide with
those of t

0c
(x ).

Again, applying the branch point choice, equation (9), for the evaluation of I(0) in
equation (11), the long-wave pressure given by equation (14) becomes

p
0
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(º@
c
)2g

P
r
#iP

i

"

(º@
c
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i
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i
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LxD , (15)

where
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y
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B
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)2] (16)

and

P
i
"2n

º@@
c

º@
, (17)
c
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both being real quantities. The pressure has two components, as shown on the right-hand
side of equation (15); the first is in-phase with the displacement g, which gives the wall
a virtual stiffness providing a linear restoring force, and the second is out-of-phase with
g but in-phase with the wave slope Lg/Lx, which gives rise to the wave drag defined as
: p (Lg/Lx) dx. For a travelling wave, the velocity of the wall motion is linked with the slope
by Lg/Lt"!c (Lg/Lx), so that the power transfer from the flow to the wall,
:(!p) (Lg/Lt) dx, is simply the wave drag times the wave speed c. Since º@@

c
(0 and P

i
(0,

the wave drag, being proportional to the imaginary part of p
0

in equation (15), is always
positive, so is the rate of energy transfer from the flow to the wall vibration. This energy
transfer can be regarded as negative virtual damping, which, whenever exceeding the
positive structural damping, brings about flutter-type instability for k'0.

If the varicose wave travels faster than the maximum flow speed, c'1, or against the
flow, c(0, there is no critical layer and the integrand (º!c)~2 in equation (8) has no
singularity. As a result, W(y ) will be purely real and the wall pressure will act in-phase with
the displacement g. It can be seen later in the eigenvalue studies that such waves do not lead
to flutter. The same applies to irrotational and uniform flow with any wave speed; the
perturbation pressure is then

pD
105%/5*!-&-08

"!(º!c)2g. (18)

The pressure induced by the wall displacement in potential flows always leads, and when
this force overcomes the natural stiffness of the structure, the structure fails by static
divergence. We are intrigued to find out whether this is also true for elastic channels
conveying shear flows. In our formulation, we are looking for a condition under which
P
r
becomes positive. It is apparent from equation (16) that a simple necessary condition is

difficult to obtain, since P
r
depends on both the velocity profile and the wave speed. We are

content with some qualitative analysis for certain values of the wave speed by specifying y
c
.

The simplest case is y
c
"1

2
, for which the logarithmic term in equation (16) vanishes and the

third term largely determines P
r
. Furthermore, we assume a general power law for the mean

velocity profile [as was done by Brooke Benjamin (1959), the possibility of turbulence-wave
interaction is ignored here],

º"y1@n . (19)

The dependence of P
r
on n is found to be

P
r
+

!n2#6n!1

3n2
.

P
r

becomes positive when n(3#J8+5.83, which is indicative of a velocity profile
somewhere between laminar and fully turbulent flows. We therefore conclude that for
laminar-type flows, P

r
can be positive and as a result the fluid exerts a positive virtual

stiffness on the displaced channel walls. In other words, the negative stiffness caused by the
Bernoulli effect can be reversed depending on the velocity profile and the wave speed.

2.3. THE k2-TERM

From the Rayleigh equation (5), we have the following relation for W
2
(y ) in the Heisenberg

expansion of the stream function, W
0
#k2W

2
#2 :

[(º!c)W@
2
!º@W

2
]@"(º!c)W

0
, (20)
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where the long-wave stream function W
0

is already given in equation (8). Integrating the
above equation twice leads to

W@
2
!

º@
º!c

W
2
"

1

º!c Cb0#P
y

0

[º (y
1
)!c] W

0
(y

1
) dy

1D , (21)

W
2
"(º!c) Gb1

#b
0

[I (y)!I(0)]#P
y

0

1

[º(y
2
)!c]2

]CP
y2

0

[º(y
1
)!c]W

0
(y

1
) dy

1D d y
2H ,

where I(y ) was defined earlier in equation (8), and b
0

and b
1

are constants to be determined
by boundary conditions. By exchanging the order of integration we arrive at

W
2
(y)"(º!c) Cb1#b

0
[I(y )!I (0)]#P

y

0

[º (y
1
)!c]W

0
(y

1
)[I (y)!I(y

1
)] dy

1D .

(22)

The boundary conditions for W
2
at y"0, 1 are homogeneous since the kinematic condition

v"dg/dt has already been satisfied by the long-wave solution, W
0
(0)"c. The wall

boundary condition W
2
(0)"0 gives b

1
"0, while that of the centreline, y"1, gives

b
0
"

:1
0

[º(y
1
)!c]W(y

1
)[I (1)!I(y

1
)] dy

1
I (0)!I(1)

"P
1

0

W2
0
(y

1
) dy

1
(23)

by recalling the definition of W
0

in equation (8).
The stream function W

2
(y ) can now be evaluated by equation (22). The contribution of

W
2

to the wall pressure, p
2
, is found by substituting the expression of W

2
and the boundary

condition W
2
(0)"0 into the general form of pressure perturbation given in equation (4),

hence p
2
"cW@

2
(0)g. The wall derivative W@

2
(0) is found to be !b

0
/c from equation (21), so

that p
2
"!b

0
g or

p
2
"!g P

1

0

W2
0
(y) dy. (24)

Numerical examples of the real and imaginary parts of p
2
/g will be given later in Figure

2 when we consider the specific velocity profile of plane Poiseuille flow.

2.4. PLANE POISEUILLE FLOW

The general analyses of Section 2.2 indicate that (a) the shear flow exerts wave drag on the
walls which could experience flutter-type instability and (b) the familiar Bernoulli effect
could be reversed in laminar-like flow conditions. However, these analyses are conducted
on the basis of a truncated series and for a particular value of y

c
it is necessary to verify the

conclusions by an exact solution for a specific velocity profile, for which purpose the plane
Poiseuille flow is chosen. The parabolic velocity profile is given below, together with its
critical layer level y

c
,

º"1!(1!y )2, y
c
"1!J1!c . (25)



142 L. HUANG
The integral I (y) of equation (8) becomes

I (y)"
1!y

!2(1!c) (º!c)
#

1

4(1!c )3@2
ln A

y!y
c

2!y!y
c
B .

The long-wave stream function W
0
(y ) of equation (8) is expressed as

W
0
(y)"

2(1!y
c
)(1!y)!(º!c )ln[(y!y

c
)/(2!y!y

c
)]

2(1!c)1@2/c#ln[y
c
/ (2!y

c
)]!in

. (26)

The long-wave pressure is

p
0
"

4(1!c)3@2

2(1!c)1@2/c#ln[y
c
/(2!y

c
)]!in

g, (27)

while the contribution from the k2-term can be calculated by equation (24).
We now define the real and imaginary parts of wall pressure as the virtual stiffness K and

the drag coefficient D, respectively,

K"Re (p/g)"K
0
#k2K

2
#2, D"Im(p/g )"D

0
#k2D

2
. (28)

K
0

and K
2

for the parabolic velocity profile are now compared with the virtual stiffness for
the potential flow of the same average velocity, denoted by K

p
,

º
!7
"P

1

0

º(y ) dy"
2

3
, K

p
"!(º

!7
!c)2,

cf. equation (18). Figure 2(a) shows that K
0
'0 for the whole range of wave speed, c3(0, 1),

confirming our earlier anticipation that the Bernoulli effect can be reversed in laminar shear
flows. The magnitude of K

0
reaches its peak at c+0.25 instead of cP0 for K

p
. Figure 2(b)

shows the drag coefficients. D
0
'0 means a positive wave drag or a negative fluid damp-

ing on the walls, but there is no wave drag if the mean flow is uniform. Also shown in
Figure 2 are K

2
and D

2
which will be useful in the eigenvalue studies later on.

We now visualize the flow pattern for the perturbed plane Poiseuille flow for the
long-wave limit. To do so we change to a reference frame that moves with the wall waves, so
Figure 2. Virtual stiffness and damping coefficient induced by shear flow of parabolic velocity profile. (a)
Comparison of the virtual stiffness K

0
, K

2
with that of potential flow of the same average velocity, K

p
. (b) The drag

coefficients, D
0
, D

2
. Positive drag means negative virtual damping for the coupled fluid structural oscillation

system
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that the waves become stationary and the whole flow field steady. The undisturbed velocity
distribution is º!c, so the flow goes to the left below the critical layer. Real parts of
complex variables correspond to physical properties, e.g., g"g

0
cos(kx) and two

wavelengths are covered for the streamline contours. The flow in Figure 3 goes to the right
above the critical layer, y'y

c
"0.15, and to the left underneath. The closed streamline

patterns are the famous Kelvin’s (1880) ‘‘cat’s eyes’’ in which flow circulates clockwise. The
centres of the cat’s eyes are located at a distance of 0.39 wavelength, right to the wall wave
crests. This has two implications.

The first is that, since the pressure troughs are located where the wall is displaced
downwards, the low pressure there tends to move the wall back to its undisturbed position,
the phenomenon which we call the reversal of the Bernoulli effect. This part of the result is
unique for our channel flow configuration and needs to be properly understood in simple
physical terms. Figure 3(b) gives a close-up view of the streamlines near one of the Kelvin’s
cats’ eyes. If the mean flow is uniform, then the flow is faster at the wave peaks than at the
troughs. But for the shear flow, the Kelvin’s cats’ eyes shelter themselves in the trough
region where the cross-section is enlarged, thus blocking off part of the flow passage. From
Figure 3(b) it can be seen that the streamtubes are actually narrower at the trough region
B than that at the peak region A. As expected, the static pressure is found to be higher where
the flow is slower and the flow is slower where the streamtubes become wider. We have
therefore demonstrated that the reversal of the Bernoulli effect is caused by the global
change of flow pattern instead of the local breakdown of the relationship between flow
velocity and static pressure.

The second implication is that the pressure has its troughs on the leeward side, so there is
a component in-phase with the wave slopes causing wave drag, a result which is compatible
with that obtained for shear flows in the semi-infinite space by Miles (1957) and explained
by Lighthill (1962). To overcome the wave drag, the mean flow must give up part of its
kinetic energy which is then fed into the growing varicose waves, a characteristic phenom-
enon known as flutter. The actual occurrence of flutter is now examined by the eigenvalue
problem.
Figure 3. Streamline patterns for y
c
"0.15, g

0
"1%, c"0.28. The troughs of the pressure coincide with the

centres of the closed streamlines. Note that the intervals between the adjacent iso-t lines are less near the critical
layer than elsewhere, so that more details can be shown there. (a) The overall view for two wavelengths; (b)
a zoom-in around one of the Kelvin’s ‘‘cats’ eyes’’ which shows the narrowing of streamtube width from A to B. The

shaded base is the wavy wall
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3. THE EIGENVALUE PROBLEM

A formal solution to the dynamics of the fluid—wall eigensystem requires the knowledge of
fluid loading for arbitrary wavelength. We restrict ourselves to situations where the
wavelength is finite but long, so that we are reasonably confident that the inclusion of the
k2-term will give us a satisfactory approximation. We then seek to identify the parameter
range in which this approximation is valid, i.e. the condition for the critical wave number to
be small.

We consider a channel (see Figure 1) with its walls supported by a continuous elastic
foundation. Tension and material bending stiffness can certainly be included, but our
emphasis has been placed with long-wave perturbations for which the bending and tensile
stresses are ineffective. The single stiffness modelling is also rather appropriate when
modelling flow through collapsible tubes. Before self-induced oscillation occurs, the par-
tially collapsed tube reacts to perturbations by developing circumferential bending stress
which is often represented by a tube law, equivalent to our elastic foundation in two
dimensions [method of corrections for significant longitudinal stresses can be found in
McClurken et al. (1981)].

3.1. THE GOVERNING EQUATIONS AND APPROXIMATIONS

The dynamics of the wall vibration is written as

m*g̈*#2m*d*gR *#E*g*#p*"0, (29)

where the overdot stands for derivative with respect to time and m*, d*, E*, p* are,
respectively, the dimensional mass per unit distance, damping, foundation elastance, and
the wall pressure perturbations. For convenience, we also define the in vacuo (p*"0)

oscillation frequency for a damping-free system, u*
0
"JE*/m*, which is also the critical

value of the damping when the in vacuo oscillation frequency vanishes. The ratio of the
actual damping to the critical damping,

d"d*/u*
0
, (30)

is the familiar damping ratio in vibration studies, although the precise mechanism of energy
dissipation in solids is a complicated issue. Normally, both d* and d are functions of
frequency. But in order to focus on the fluid dynamical aspect of hydroelasticity, we simply
assume that the dimensionless damping ratio d is a given material constant, bearing in mind
that such assumption has certain impact on the form of the final results. To get the sense of
order of magnitude for d, we consider in vacuo vibrations in which the amplitude decays as
exp(!d*t*). The rate of amplitude decrease per cycle is 1!exp(!2nd )+2nd. Typical
values of d for steel spring and natural rubber are, respectively, 0.005 and 0.05. That for
living tissues is likely to be either comparable or greater than that of rubber [cf. Fung
(1993)].

For a varicose wave

g*"g*
0
exp[i(k*x*!u*t*)],

where u*"c*k* and k* is real and small, the fluid loading can be written as

p*"o* (º* )2(K#iD)g*/h*,

0 .!9
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where

K"K
0
#k2K

2
#2, D"D

0
#k2D

2
#2 .

Note that K
0
, D

0
, K

2
and D

2
are functions of c only, but K and D are functions of both

wave speed and wave number. The equation for the dimensional complex eigenfrequency
u* is

!(u*)2!2id*u*#(u*
0
)2#

o*
0
(º*

.!9
)2

m*h*
(K#iD )"0. (31)

We now normalize the eigen-equation using the old length scale h* but the new velocity
scale u*

0
h* . We introduce

m"

m*

o*
0
h*

, º
w
"

º*
.!9

u*
0
h*

, u"

u*

u*
0

"ckº
w
, (32)

where m is the familiar mass ratio, º
w

is the centreline flow velocity scaled by the structural
rigidity, and u is the dimensionless angular velocity. Note that a factor of º

w
has entered

the expression for u due to the earlier scaling of wave speed by º*
.!9

. The dimensionless
version of equation (29) becomes

!u2!2iud#1#
º2

w
m

(K#iD)"0.

Flutter occurs if the complex u has a positive imaginary part, and the critical condition is
Im(u)"0. Under the critical condition, u is real and the eigen-equation is split into real
and imaginary parts,

u2"1#
º2

w
m

K, 2ud"
º2

w
m

D ,

which clearly shows that flutter will occur when the negative fluid damping overcomes the
structural damping, while a reversed Bernoulli effect will increase the eigen-vibration
frequency. Inserting u"ckº

w
,

º2
w
[(ck )2!K/m]"1, 2md(ck)"º

w
D. (33)

Given the mass ratio m and the damping ratio d, these two equations give two functional
relationships, º

w
(k) and c(k ) between the three otherwise independent variables, c, k and

º
w
. The valley of the eigen-velocity curve º

w
(k ) then gives the critical point of flutter onset.

To calculate, one first needs to cancel º
w

from the two equations to find the dispersion
relation c (k), which is then substituted back into any one of the two equations to find º

w
(k).

This is easily done numerically. However, we found this unnecessary for flutter caused by
waves of long but finite wavelength. Below we follow an approximation procedure which
leads to a clear analytical solution which has been checked by accurate numerical results.

First, the cancellation of ck in the two equations (33) gives

º
w
"S

2md

D
Je#Je2#1 , e"

Kd

D
. (34)

To the long-wave limit, e"K
0
d/D

0
, and it can be seen from Figure 2 that K

0
/D

0
is of the

order of unity unless cP0, which is not the case since ckP0 will not satisfy the first of
equations (33). This is so because K '0 and K /m approaches zero slower than the other
0 0
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term, (ck )2, as cP0. In other words, static divergence does not occur for flexible channels in
which the Bernoulli effect has been reversed. The correction of finite wavelength does not
have much effect on this since both K

2
and D

2
approach 0 faster then c, cf. Figure 2. Having

assured that the eigenwave speed c is not too close to 0, hence K/D"O(1), we find the
parameter e"O(d), where d is small, except for materials or structures specially made for
vibration absorption purposes. Therefore, equation (34) may be simplified by ignoring e and
the two equations (33) are approximated by

º
w
+S

2md

D
, u"ckº

w
+1. (35)

It is now clear that the critical flow velocity is mainly controlled by the drag coefficient,
while the influence of the virtual stiffness is practically negligible; u"1 means u*"u*

0
, i.e.

resonance. One important consequence of this is that if we effectively measure the in vacuo
frequency of the channel vibration through measuring E* and m*, an agreement on flutter
frequency between the theoretical prediction and the experimental data does not necessarily
validate the fluid dynamic model employed. The real validation can only be achieved
through the flow velocity at which flutter occurs, which is not an easy task given the
difficulty of modelling the structural damping mechanism accurately.

By adopting the approximation of eP0 and recalling D+D
0
#k2D

2
, we can solve the

two equations (35):

k2"
D

0
2mdc2!D

2

, º
w
"S

2md

D
0

!

D
2

c2D
0

, (36)

where the right-hand sides are purely functions of c. The first expression effectively gives the
dispersion relationship c(k) and the second will enable us to find the critical flow speed, as
shown in Figure 4(a). In this example, the wave number is reasonably small and the
Heisenberg expansion should converge rapidly. But Figure 4(b) shows that the method may
eventually fail as md becomes too small. Therefore, md<1 is the condition under which the
long-wave features of the solution dominate the flutter behaviour. For materials like rubber,
Figure 4. Eigenvalues. (a) The finding of the critical point: m"100, d"0.06, and the critical point is shown by
a circle where c

#3
"0.43, k

#3
"0.62, º

w#3
"3.79. (b) Variation of the critical condition as a function of the
controlling parameter md.
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the damping ratio d is not too large, so the mass ratio, m"m*/o*
0
h*, has to be large. The

theory is therefore valid for thick-walled and narrow channels.
Under the condition of md<1, D

2
-terms in equation (36) may be ignored, so that

º
w
+J2md/D

0
. A rough estimate for flutter of very long waves should be where the

long-wave drag coefficient D
0
(c) peaks, i.e. c+0.41, D

0
+0.45, cf. Figure 2(b). The approx-

imate critical flow speed and the wave number are, respectively,

º
w#3

+2.12Jmd , k
#3
+

1.16

Jmd
.

Based on this simple estimate, we now revert the dimensionless results back to dimensional
variables so that the influence of each physical variable can be identified clearly,

º*
.!9

JJE*h*d/o*
0

. (37)

The critical flow speed increases with the elastic strength of the channel and the level of
damping. The critical flow speed also increases with the channel height. Large channel wall
separation stabilizes the system or the proximity of the opposing wall has a destabilizing effect.

3.2. COMPARISON WITH LAROSE & GROTBERG’S THEORY

LaRose & Grotberg (1997) considered the symmetric mode instability of developing flow
through flexible channels. Plane Poiseuille flow is also considered as the limit case of developing
flow. They solved the eigenvalue problem of the Orr—Sommerfeld system and the numerical
examples given are based on the experimental studies of Gavriely et al. (1989) in which the
opposing walls of the partially collapsed tube are very close (h*"0.7 mm). The Reynolds
number, based on the average channel flow velocity and the channel height, is 622. An analytical
solution is also given for the long-wave limit. Both long-wave instability (k"0) and finite
wavelength flutter are found. Despite the fact that our inviscid flow model effectively takes the
Reynolds number to infinity, we found agreement with their results on the following:
(i) flutter instability of symmetric mode dominates the behaviour of the flexible channels
instead of the Tollmien—Schlichting instabilities;
(ii) the eigenfrequency for the thick-walled channel is close to its in vacuo value although,
strictly speaking, our result for u

#3
should always be slightly over unity due to the reversal of

the Bernoulli effect;
(iii) their result for the critical flow speed is in qualitative agreement with our approximate
formulae (37).

However, there are differences, as follows.
(a) For our inviscid flow model, reversal of the Bernoulli effect is found for the whole range
of wave speed, c3 (0, 1), and therefore no long-wave instability is present in our model.
However, LaRose & Grotberg were able to demonstrate that under certain conditions the
long-wave instability precedes flutter when the channel height is large, which may be
interpreted as the initial phase of channel collapse observed in experiments.
(b) The eigenwave speeds found in their calculations are typically twice the maximum flow
speed through the channel, while ours is always less than the maximum flow speed. In other
words, the critical layer where º"c is absent in their studies. Their mechanism of flutter
has more to do with the direct action of viscosity in the wall layer, the essence of which was
modelled in the much earlier work of Grotberg & Reiss (1984). In our model, however, the
main mechanism lies with the action of the critical layer and the shift of Kelvin’s ‘‘cats’ eyes’’
in relation to the varicose waves of the wall.
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Being based on the inviscid flow assumption, our theory will only be a good approxima-
tion to reality when the Reynolds number (Re) at which flutter occurs is large. From
equation (37) we find that the critical Reynolds number is proportional to (h*)3@2(E*d)1@2,
depending primarily on the channel height. However, for flow through collapsible tubes, the
circumferential bending stiffness, which corresponds to the foundation elastance E* in our
channel model, is related to h* or the shortest distance between the opposing sides of the
oval or dumbbell-like tube cross-section. It is beyond the scope of the present study to relate
all these parameters with the gradual collapsing process of compliant tubes as the trans-
mural pressure is raised. But we do know that the Reynolds number in the upper airways
falls in the region of a few thousands, for which our inviscid flow assumption Re~1P0 may
not be too bad after all. Of course, a more satisfactory theory has to account for the viscous
effect in such an intermediate range.

3.3. OBSERVATION OF CRITICAL WAVE SPEED IN EXPERIMENT

Experimental validation for the theoretical predictions, especially the critical flow and wave
speeds, is crucial but the majority of the published experiments are not suitable for
comparison for two reasons. One is that most experiments have been conducted using water
as fluid [cf. Bertram et al. (1990)]. The mass ratio m is then relevant to applications such as
blood flow through large vessels. To our knowledge, there is only one relevant experiment
by Gavriely et al. (1989) using airflow, which was used for comparison with the theoretical
predictions of LaRose & Grotberg (1997). The second reason why experimental validation
of a channel flutter theory has been difficult is that the conditions under which the
self-induced oscillations occur are very far from a uniform channel of great length.

The second point was highlighted by LaRose & Grotberg (1997), who showed that the
flow speed through the narrow, channel-like passage of the tube is likely to be lower than
that through the two side-lobes of the dumbbell-like tube section, which is also demon-
strated experimentally for steady flow by Bertram & Godbole (1997). The only available
velocity measurement was the total volume flow rate, or the average flow velocity through
the tube. A finite element calculation was carried out by LaRose (1994) and the lower
velocity through the centre sections is estimated. Direct comparison between this projected
experimental data and the theoretical prediction also proved to be difficult and we do not
attempt such a comparison with our prediction. What we believe would be a useful
comparison, however, is the measured wave speed with the measured critical flow speed.

A range of almost 2 : 1 in wavelength, j*"3—5 cm, was reported by Gavriely et al.
(1989) and there are three sets of data presented by LaRose & Grotberg (1997) correspond-
ing to the half-channel width h*"0.81, 0.70, 0.37 mm, respectively. Presumably, we may
take h*"0.70 mm and j*"4 cm for the purpose of estimation. For this channel width, the
oscillation frequency was f *"300 Hz, so the wave speed is c*"j*f *"12 m/s. The
measured flow velocity averaged over the whole tube section was 27.60 m/s, while that for
the central part was estimated by the finite element calculation as 10.0 m/s. The maximum
flow speed in the channel section, however, appears to be around 20.0 m/s [cf. LaRose
(1994)].

The wavelength predicted by LaRose & Grotberg (1997) was around 3 cm, corresponding
to 9 m/s of wave speed for the frequency of 300 Hz, which is two to three times the predicted
critical flow speed depending on the velocity profile used. The authors drew satisfaction
from the fact that the predicted wave speed is close to the measured value. But from the
present author’s perspective, what is important in the unsteady fluid dynamics is how the
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wave speed compares with the maximum flow speed in the channel, a comparison which
LaRose & Grotberg did not make. On this account, we find the measured wave speed is
somewhat less than the measured maximum flow speed even for flutter at such a low
Reynolds number.

4. CONCLUSIONS

A boundary-value problem is investigated for the pressure perturbation induced in shear
flows through channels whose walls undergo symmetric wave motions of phase speed less
than the maximum flow speed. The main result is that for shear flows with moderate
velocity gradient near the wall, the sign of the pressure component in phase with the wall
displacement is opposite to that according to the Bernoulli equation for a uniform potential
flow model. This means a reversal of the collapsing tendency of compliant fluid passages.
The reversal of the Bernoulli effect can be seen as the channel—wall amplification of Miles’s
(1957) water wave generation mechanism. That mechanism is visualized by the right-shift of
Kelvin’s cat’s eye flow pattern around the critical layer. It has been analytically demon-
strated that, for the whole range of wave speed, c*3(0, º*

.!9
), the parabolic profile of plane

Poiseuille motion induces a right-shift in excess of a quarter wavelength, causing the
reversal of the Bernoulli effect.

One of the implications is that a potential flow model does not always provide a correct
first approximation to the viscous and vortical flow problems. The fact that this is so was
also reflected upon by Carpenter & Garrad (1986) in their review of potential flow analyses
for the study of flow stability over Kramer-type surfaces.

The second conclusion is that the fluid pressure always has a component in phase with
the wave slope causing wave drag and energy transfer from the flow to the perturbation
waves, a direct extension of Miles’s water wave generation theory to the varicose wave in
flexible channels. This is a mechanism for travelling wave flutter which occurs when the rate
of this energy transfer exceeds the rate of dissipation in the walls. The eigenvalue problem is
considered for the thick-walled channel flutter whose eigenwaves are likely to be long in
comparison with the channel width. The critical flow velocity and the wave speed for the
flutter onset are given for simply supported compliant channels. In terms of Brooke
Benjamin’s classification, this is a class B instability which exists even when the fluid is
inviscid. Our theory therefore contrasts with a previous work (Grotberg & Reiss 1984) in
which the viscous wall shear stress is fully responsible for flutter. Distinction is also made
between our shear-flow flutter theory and the latest development of the viscous flutter
theory (LaRose & Grotberg 1997) in which eigenwaves typically travel twice as fast as the
maximum flow velocity in the channel. Further studies are needed to characterize the
intermediate region in which both the wall layer and the critical layer may play important
roles.
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